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A Numerical Method for Dynamic Analysis of Tracked Vehicles of
High Mobility

Kisu Lee*
Associate Professor, Department of Mechanical Engineering, Chonbuk National University

A numerical method is presented for the dynamic analysis of military tracked vehicles of high
mobility. To compute the impulsive dynamic contact forces which occur when a vehicle passes
on a ground obstacle, the track is modeled as the combination of elastic links interconected by
pin joints. The mass of each track link, the elastic elongation of a track link between pin joints
by the track tension, and the elastic spring effects on the upper and lower surfaces of each track
link have been considered in the equations of motion. And the chassis, torsion bar arms, and
road wheels of the vehicle are modeled as the rigid multibodies connected with kinematic
constraints. The contact positions and the contact forces between the road wheels and track, and
the ground and the the track are simultaneously computed with the solution of the equations of
motions of the vehicle consisting of the multi bodies. The iterative scheme for the solution of the
multibody dynamics of the tracked vehicle is presented and the numerical simulations are
conducted.
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1. Introduction

Even though computational multibody
dynamics are widely used for the dynamic analy­
sis of various kinds of machines and vehicles (e.
g., Garcia de Jalon and Bayo, 1994), the applica­
tion to the tracked vehicles is relatively limited.
The major difficulties in analyzing the tracked
vehicles by the computational multibody
dynamics are the efficient and realistic modeling
of the track and the accurate computation of the
contact forces acting on the track. Literature
survey shows that the track is usually regarded as
massless internal force elements between the road
wheel and the ground. For example, McCullough
and Haug (1986) represented the track as the
internal force elements and assumed that the track
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is connected by the several straight lines between
the road wheels or between the road wheel and
the obstacle. But, in most of the real tracked
vehicles of high mobility, the track makes point
contact with the road wheel due to high track
tension, and the track cannot be represented by
several straight lines because the inertia effects of
the track cannot be neglected when impulsive
contact forces developed by the obstacles on the
ground (it is worth to note that, in most of the
military tracked vehicles, the total weight of the
track is almost equal to the total weight of the
road wheels). Meanwhile, Nakanishi and
Shabana (1994) investigated the dynamics of the
tracked vehicles such as bulldozers and hydraulic
excavators with full consideration of inertia
effects of the track. They represented the track as
the rigid bodies interconnected by revolute joints
and computed the contact forces between the
track and the road wheels, rollers, sprocket, and
idler with the suitable values of the stiffnesses of
the springs. They included the rotary inertia of
the track link in the equation of motion and
solved the mixed differential algebraic equations.
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2. Modeling of Tracked Vehicles and
Contact Forces

where q is the vector of the generalized coordi­
nates of the multi bodies consisting of the chassis
and the connected vehicle components, and t
denotes the time.

When a tracked vehicle collides with a large

2.1 Modeling of vehicle and track
In this work, two-dimensional military tracked

vehicles of high mobility are considered with
special attention on the impulsive contact forces
acting on the track and road wheels. The vehicle
is assumed to consist of rigid chassis (i. e., hull
and turret), rigid road wheels, rigid torsion bar
arms, and track. And the rigid torsion bar arms
are connected to the chassis of the vehicle by the
torsion bar springs. In the tracked vehicles,
among the contact forces between the track and
the vehicle components, the contact forces
between the track and the road wheels play the
major roles. Thus, for the sake of simplicity, the
sprocket, idler, and roller supports are not consid­
ered in this work, and the both ends of the track
are directly connected to the chassis as shown in
Fig. 1. In this work the rotary moment of inertia
of each road wheel about its center is neglected,
and thus the road wheel and the torsion bar arm
are regarded as one continuous rigid body. Also,
the friction between the road wheel and the track
is neglected (the vehicle is assumed to move with
a constant horizontal velocity at the beginning of
the analysis), and thus the contact force acting on
the road wheel directs toward the center of the
road wheel. The kinematic constraints between
the chassis and the torsion bar arms are generally
expressed as

(I)fP (q, t) =0

Even though such a modeling technique might be
applicable for the tracked vehicles of low velocity
having negligible track tension, to the author's
best knowledge, for the military tracked vehicles
having large track tension, the rotary inertia of
the track link may be neglected compared to the
relatively larger translatory inertia of the track
link. And efficient numerical techniques should
be adopted to enforce the correct contact con­
straints on the track because very large contact
forces usually play the major roles in the military
tracked vehicles of high mobility especially when
they pass the obstacles with high velocity. Also,
the track tension should be involved in the equa­
tion of motion and should be simultaneously
computed with the other unknowns of the equa­
tion of motion.

In this work, the dynamic problems of military
tracked vehicles are solved by combining the
numerical techniques suggested by the author for
multibody dynamics (Lee, 1993) and dynamic
interaction between the vehicle and the flexible
structure (Lee, 1997), respectively. To compute
the correct dynamic contact force acting impul­
sively, the track is modeled as the combination of
elastic links interconnected by pin joints. The
mass of each track link, the elastic elongation of
a track link between' pin joints by the track ten­
sion, and the elastic spring effects on the upper
and lower surfaces of each track link have been
considered in the equations of motion. And the
chassis, torsion bar arms, and road wheels of the
vehicle are modeled as the rigid bodies connected
with kinematic constraints. The Lagrange multi­
pliers associated with the kinematic constraints of
the vehicle components, the contact forces acting
on the track, and the track tension are simultane­
ously computed with the equation of motion of
the whole system. In this work the modeling
techniques of the tracked vehicle for computing
the dynamic contact forces acting impulsively on
the track and road wheels are explained, and the
numerical simulations are conducted.

Fig. 1 Model of the tracked vehicle (also, the initial
configuration for the numerical experiment)
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Fig. 2 Model of the track

ground obstacle, the shape of the track usually
changes drastically by the impulsively forces.
Thus, for the correct dynamic analysis, it is essen­
tial to compute the complicated track shapes after
the impulsive collision. In this work, for comput­
ing the contact forces acting impulsively on the
track, the track is assumed to consist of the links
interconnected by pin joints as shown in Fig. 2.
As the length of the track link is relatively small
in the real tracked vehicles, the rotary inertia of
each link is neglected, and the mass of the track is
assumed to be concentrated on the pin joints. In
the real military tracked vehicles the track links
are made of thick steels, and the pin joints
between the track links are covered by elastic
rubber bushes which deform by track tension.
Also, the upper and lower surfaces of the track
links are covered by thick elastic rubber pads in
the real military tracked vehicles. Thus, in this
work, for the elastic effects of the track center line
in the longitudinal directions of the links due to
the rubber bushes on the pin joints, the track
links are assumed to be massless stiff springs
which may be deformed in the longitudinal direc­
tions between the pin joints (the springs between
the pin joints maintain straight lines during the
deformation). As the rubber pads on the upper
and lower surfaces of the track link may deform
by the contact with the road wheel and the
ground, respectively, the stiff springs are assumed
to exist on the contact points of the upper and
lower surfaces of the track. In this work the
ground is assumed to be a rigid body, and the
surface of the ground is expressed by using several

Fig. 3 Possible contact points between the wheel
and the track link

lines. The vehicle is assumed to move on the
ground without friction.

2.2 Contact points and contact forces of
track

The road wheels of the vehicle may contact
with the track, and the track may contact with the
ground as explained before. The huge contact
forces developing on such contact points usually
govern the equations of motion of the whole
system. Thus special techniques are required to
detect the correct contact points and to compute
the correct contact forces in the solution. In this
work, by the same way explained by Lee (1997),
the possible contact points between the road
wheel and the track are detected by drawing the
normal line from the center of the road wheel to
each link of the track as shown in Fig. 3. Then,
for the wheel shown in Fig. 3, the distance
between the wheel center i and the corresponding
center line of the track link, s.; is
expressed as

where io« and uu, are the coordinates of the
center of the road wheel i which are easily
obtained from generalized coordinates q of the
vehicle, and <Pi is the angle denoting the normal
direction as shown in Fig. 3. Also, UiX and Uiy are
the coordinates of point f in the center line of the
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Track Center Line

Fig. 5 Possible contact points between the ground
and the track link

Track Center Line

Fig. 4 Possible contact points between the wheel
and the pin joint of the track

where kw is the spring constant of the rubber pad
between the track and wheel, r is the radius of the
road wheel, and hw is the distance between the
upper surface of the track and the center line of
the track as shown in Fig. 2.

The possible contact points between the track

Fig. 6 Possible contact points between the corner of
the ground and the pin joint of the track

and the ground may be detected by drawing the
normal lines from the pin joints of the track to the
ground, and also by drawing the normal lines
from the corner points of the ground to the track
links as shown in Fig. 5. For the ith possible
contact point shown in Fig. 5, the distance
between the center line of the track and the
possible contact point on the ground, s.; is expres­
sed as

s,> - (UiX- xix)sin<pi+ (UiY- XiY) cos <Pi (5)

where u« and Uiy denote the coordinates of point
t on the track center line shown in Fig. 5 and
may be computed by the relation similar to (3),
XiX and XiY denote the coordinates of possible
contact point i on the ground, and <Pi is the angle
denoting the normal direction shown in Fig. 5. If
the track links are positioned as shown in Fig. 6,
the normal lines from the corner point of the
ground does not intersect with the track links

(3)

(4)

Uix

track link shown in Fig. 3 which are related to the
coordinates of pin joints /3 and (/3 + I), apx, apy,
atP+l)x, and a(P+l)X, by the following:

dlapX+ doatP+l)X
do+dl

d,apy+doatP+I)Y
do+d1

where do and d, denote in Fig. 3 (they are
determined by drawing the normal lines on the
track center line). And, if the track links are
positioned as shown in Fig. 4, the normal lines
from the center of the wheel does not intersect
with the track links even though the pin joint
between them may contact with the wheel. In such
a case, as shown in Fig. 4, the line connecting the
wheel center and the pin joint is regarded as the
normal line on which the contact force is acting.
The contact force between the road wheel and the
track may be computed by using the compression
of the rubber pad between them. For example, if
the contact force is assumed to be linearly related
to the deformation, the contact force acting on
possible contact point i, Pi may be written as
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(7)

even though the pin joint between them may

contact with the corner of the ground. In such a

case, as shown in Fig. 6, the line connecting the
corner of the ground and the pin joint is regarded

as the normal line on which the contact force is
acting. The contact force between the ground and

the track may be computed by using the relative

deformation between them. Even though such
contact force is usually nonlinearly related to the
compressed deformation on the contact point, if

linear relation is assumed for the sake of simplic­
ity, contact force acting on possible contact point

i, Pi' may be written as

(6)

where kg is the spring constant between the track
and the ground, and hg is the distance between
the lower surface of the track and the track center

line as shown in Fig. 2. Even though damping
effects may also be accompanied when the rubber
pads are deformed by the contact forces, for the
simplicity, the damping related to the track defor­

mation is not included in the equations.

3. Equation of Motion

In this work, the equation of motion of the
multi bodies connected to the chassis with
kinematic constraints (i. e., the equation of

motion of the vehicle except the track) is written
with the generalized coordinates which are widely
used in multi body dynamics. As the masses of the
track links are assumed to be concentrated on the
pin joints, the equations of motions of the track

are simply written with the global x and y coordi­
nates. In the equation of the multibodies includ­

ing the chassis and the road wheels, the contact
forces acting on the road wheels are easily trans­
formed to the generalized forces corresponding to

generalized coordinates q by the basic principles
of the dynamics. In the equations of the track, the
contact force acting on the track link is

decomposed into the equivalent forces acting on
the adjacent pin joints. For example, in Fig. 3,

contact force Pi acting on the track is decomposed

into equivalent forces PP and P'p+! acting on pin

joints /3 and /3 + 1 by the following:

, d.
PP= do+d

1
Pi

, do
PP+l= do+d! Pi

The track tension may be computed by using
the deformations between the pin joints. For

example, if the spring in the center line of the
track link in Fig. 2 is assumed to be linear, track

tension TPIP+! ) between pin joints /3 and /3+1
may be computed by the following:

Tpcp+ll=kr(j (a.s:r-aCp+!)x) 2+ (apy-aIP+llY) 2 _ Lo)

(8)

where k r is the spring constant which is assumed

to exist in the center line of the track, a/bC, apy,
acP+!)X' and a(p+!)y denote the deformed coordi­
nates of pin joints /3 and fJ+1, respectively, and
Lo denotes the undeformed length of the track
link.

The equation of motion of the whole vehicle
may be written as

[~e ;J[~]

[
-tPJA.+HPw+ce(q,a)+!e ]

= Qw RwPw+Qg Rg pg+e(a) +Cr(q, a) +!r
(9)

where Me is the mass matrix of the multibodies
consisting of the chassis and the connected

bodies, and Mr is the mass matrix of the track, q

is the vector of generalized coordinates of the
chassis and the connected bodies, a is the vector
of the x and y coordinates of the pin joints of the

track, tPq is the constraint Jacobian matrix, and A.
is the vector of Lagrange multipliers. P is the
vector of the contact forces between the rigid road

wheels and the track, and the track and the
grounds. H is the matrix transforming the contact
forces to the generalized forces corresponding to

coordinates q, R is the matrix transforming the
forces acting on the contact points to the equiva­
lent forces acting on the pin joints of the track

(cf., Eq. (7)), and Q is the matrix transforming

the normal contact forces P on the contact points
to the x and y components of the global coordi­
nates. Subscripts wand g denote the contact
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between the road wheel and the track, and the
ground and the track, respectively (e.g., pw means
the contact force acting between the wheel and the
track, and pg means the contact force acting
between the wheel and the ground). And e (a) is
the vector of the forces by the track tension (cf.,

Eq. (8», and Ce(q, a) and c- ta. a) are the for­
ces acting on the chassis and the track at the both
ends of the track by the track tension. Ie and Ir
are the vectors of the known forces such as gravity
acting on the chassis and track, respectively.

4. Solution Strategy

4.1 General consideration and constraint
error vectors

For the solution of this work, differential Eq.
(9) and algebraic Eq. (1) should be solved simul­
taneously. Further, the correct contact positions
between the road wheels and the track, and the
ground and the track should be simultaneously
detected with the solution. In this work, by em­
ploying the iterative scheme of Lee (1993, 1997)
which will be explained in the next section, the
correct value of Lagrange multiplier A. which
makes constraint Eq. (1) be satisfied is computed
at each time step. And the correct contact posi­
tions are detected by drawing the normal lines as
shown in Figs. 3-6 at each iteration of each time
step. Then, Eq. (9) becomes an ordinary differen­
tial equation without any constraint, and a well­
established time integration techniques of ordi­
nary differential equation can be easily employed.
Thus, the basic strategy of this work is to find the
correct Lagrange multipliers and correct contact
positions at each time step by iterations and to
solve ordinary differential Eq. (9) with these
known Lagrange multipliers and contact posi­
tions. In this work, the one step method is em­
ployed for the time integration, and hence the
complicated discontinuous motion due to the
impacts between the track and the road wheels,
and between the track and the ground may be
efficiently computed (e. g., Addison, Enright,
Gaffney, Gladwell, and Hanson (1991), and Cash
and Karp (1990».

For the dynamic analysis of the multibodies,

besides holonomic constraint Eq. (1), the follow­
ing differential constraints should also be satisfied
on the kinematic joints:

$qq +$t =0, (10)
$qq+($qq)qq+2$qtq+$tt=0 (II)

In this work, constraint Eqs. (I), (10), and (11)
are called as position constraint, velocity con­
straint, and acceleration constraint, respectively.
In the practical computation, the satisfaction of
one kind of constraints among constraint Eqs.
(I), (10), and (11) does not guarantee the satis­
factions of the other kinds of constraints and
special techniques are required to make all the
three kinds of the constraints be satisfied. For this
purpose, by following the procedures of Lee
(1993, 1997), constraint Eqs. (1), (10), and (11)
are controlled by the corresponding constraint
error vectors defined below.

1. In case of position constraint, constraint
error vector v is defined as

v=-$ (12)
2. In case of velocity constraint, constraint

error vector v is defined as

v= - $qq - $t (13)

3. In case of acceleration constraint, constraint
error vector v is defined as

v=-$qq-($qq)qq-2$qtq-$tt (14)

In the iterative scheme which will be explained in
the next section, depending on the specified con­
straint required for that procedure, only one kind
of the constraint error vector is selected among
the three kinds of constraint error vector show in
Eqs. (12) - (14).

The basic solution procedure of this work at
each time step is essentially the same as that of
Lee (1993, 1997) and briefly summarized in the
following:

I. Solve Eqs. (9) and (I) by time integration,
and determine q, $q, a, Ii, and d of the time step
(contact force p, transformation matrices H, Q,
and R, and track tension are determined here
during the time integration, and Ii and ii of the
time step are also determined here because the
equation of motion of the track is not subjected to
constraint Eq. (I».
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2. Compute the integration error after solving

Eqs. (9) and (I) with the half step size.
3. Solve Eqs. (9) and (10) to determine q of

the time step.
4. Solve Eqs. (9) and (11) to determine A and

ij of the time step.

4.2 Iterative scheme
The correct Lagrange multipliers At+4t at time

step t +Llt are computed by the following iter­
ative scheme shown by Lee (1993, 1997):

A. t+4T =,1. t+4t, m-l_aAnv t+ 4t, m-l / IICII~ (15)

Lagrange mu1tipliers obtained by using constraint
error vectors 'jin Eqs. (12), (13), and (14), respec­

tively, may not be the same. And the most accu­

rate solution is obtained when acceleration con­
straint Eq. (14) is imposed in iterative scheme in

Eq. (15) because numerical integration errors are

involved in computing the velocities and the
displacements. Thus the Lagrange multiplier
computed by using acceleration constraint error

Eq. (14) is regarded as the most accurate one and
is used for the time integration in the subsequent

time steps.

And, when constraint error vector Eq. (13) is

used in iterative scheme in Eq. (15), matrix C is
given as

Finally, when constraint error vector in Eq. (14)

is used in iterative scheme in Eq. (15), matrix C
is given as

( 16)

(17)

(18)

(19)

2
a

4.3 Computer implementation
As the present iterative method is essentially

the same as those used by Lee (1993, 1997), the
constraint error vectors are monotonically
reduced if a is smaller than the specified value.
Thus, in this work, only brief explanations

required for the practical computation are given
here (the detailed explanation on the convergence
is shown by Lee (1993, 1997». In iterative
scheme (15), the optimum value of a is given as

where ui« and cn are quantities computed by
definitions (A. 3) and (A. 4) in the Appendix by
using a suitable value of n (for the accderated
solution the value ofn may be fixed (e. g., n= 10)

or may be controlled by the way shown by Lee
(1989» and matrix C defined below. When
constraint error vector Eq. (12) is used in iter­
ative scheme in Eq. (15), for the computation of

Wn and Cn> matrix C is given as

where m and m - I are iteration counters, and a
is a constant. An and C are matrices related to the
solution acceleration and are explained in the

Appendix and Eqs. (17) - (19) (unless a fast
convergence of the iteration is required, An might
be regarded as a unit diagonal matrix), And
v t+ 4t, m-l which is the constraint error vector

corresponding to one of definitions in Eqs, (12)­
(14) can be computed by using qt+4t,m-l, qt+4t,

m-l, and ii":": m-l which are the solutions of Eq.
(9) with A replaced by AtUt, m-l. At each time

step, the three different constraint error vectors
are used to solve Eq. (9) and one of Eqs. (I),
(10), and (II): position constraint error Eq. (12)

is used when Eqs. (9) and (1) are solved, velocity
constraint error Eq. (13) is used when Eqs. (9)
and (10) .are solved, and acceleration constraint
error Eq. (14) is used when Eqs. (9) and (11) are
solved. Iteration Eq. (15) is repeated until the

corresponding constraint error vector becomes
smaller than the prescribed tolerance.

When position constraint Eq. (1) is imposed
by using position constraint error Eq. (12) in

iterative scheme in Eq. (15), at each iteration of
each time step, the contact points are determined
by drawing the normal lines as shown in Figs. 3­
6. Then, by the same way by Lee (1997), the

correct contact points and the corresponding
normal directions are detected as long as iterative
scheme in Eq. (9) converges to the correct solu­

tion.
In the practical computation, because of the

numerical errors involved in the numerical solu­

tions of the equations of motion, the values of the
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When ~ in Eq. (A. 4) of the Appendix is

required to be computed, n and a are set to be I

and 1.9, respectively, in iterative scheme in Eq.

( 15), and~ is estimated by the initial J iterations

(e. g., J = 10) by the following way:

- . l( Am2 )Cl= mm- 1- m-l .
lo;m:a! a u 2

(20)

Start of Step 1

Set m=O. Initialize AI
+6I,O and the contact

geometries by using the solution of time step

yes
n=l

a=1.9

no
Compute matrix C and
£1 (cf. (17) and (20»

Determine a by (16) and compute An yli&,m-l

with suitable selection of n (e.g., n=lO)

Compute ;\.1+61,m by (15)

Compute contact forces, transformation matrices, and track tension,
and compute ql+A1,m and a 1+A1 •m by integrating equation (9)

Compute y l+bl.m by (12)

yes Compute time
integration
error (Ref. 4)

Fig. 7 Computing procedure of step I at time step t +ilt
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The major tasks of this work are to compute A,
q, if, ij, a, Ii, and ii at each time step by solving
differential Eq. (9), constraint Eqs. (1), (10),
(11), and the contact constraints on the track
together. And the computation procedure at time
step t +Llt is explained below:

I. Solve Eq. (9) by imposing position con­
straint Eq. (1), and determine q":", a":", li t +4 t ,

and a":", By following the procedures explained
in Sec 2 and 3, contact force p, transformation
matrices H, Q, and R, and track tension of time
step t +Llt are also determined here. Use iterative
scheme in Eq. (15) with position constraint error
vector in Eq. (12). The detailed procedure is
shown in Fig. 7.

2. By the ways explained by Lee (1993), com­
pute the total integration error of the equations of
motion. If the total integration error is within the
prescribed tolerance, predict the next step size by
the way explained by Lee (1993), and go to step
3. Otherwise, go to step I to repeat the computa­
tion from the beginning of the current time step
with the new step size.

3. By a procedure similar to step I, with the
contact force p, transformation matrices H, Q and
R, and track tension determined at step I, solve
the upper part of Eq. (9) by imposing velocity
constraint Eq. (10) and determine if t+4t (the
lower part of Eq. (9), i. e., the equation of motion
of the track, need not be solved here because it
does not contain a kinematic constraint of type
(I». Use iterative scheme in Eq. (15) with
velocity constraint error vector in Eq. (13).

4. By a procedure similar to step I, with the
contact force p, transformation matrices H, Q
and R, and track tension determined at step I,
solve the upper part of Eq. (9) by imposing
acceleration constraint in Eq. (II) and determine
A t+4t and iJ.'+4t. Use iterative scheme in Eq. (15)

with acceleration constraint error vector in Eq.
(14)

5. Numerical Examples

In the numerical example of this section the
tracked vehicle moves on the rigid ground having

a step, and the initial configuration of the vehicle
is shown in Fig. I. The vehicle consists of a rigid
chassis, five rigid torsion bar arms, five rigid road
wheels, and track. The rotary moment of inertia
of the road wheel with respect to its center is
neglected, and the road wheel and the torsion bar
arm are regarded to be a continuous body. The
vehicle is equipped with the five torsion bar
springs on which kinematic constraints (pin
joints) between the chassis and the torsion bar
arms are imposed. The data of the vehicle are: the
mass and the moment of inertia of the chassis are
20,OOOkg and 47,700kgm2

, respectively, and the
mass and the moment of inertia of each torsion
bar arm including a road wheel are 300kg and 12.
Skgm", respectively. The length of each torsion
bar arm is 0.5m, and the mass center of the torsion
bar arm and road wheel is assumed to be located
on the center of the road wheel. The relative x and
y coordinates of the track ends are ( - 2.81m, Om)
and (2.54m, Om), respectively, from the mass
center of the chassis. The relative x and y coordi­
nates of the first torsion bar are (I.7m, - 0.2m)
from the mass center of the chassis, and the
distance between each torsion bar is 0.81m. The
torsional spring constant of the torsion bar is
191kNm and each torsion bar makes 45° with the
horizontal axis at the initial equilibrium state.
The radius of the road wheel is 0.28m.

The track consists of 30 elastic links, and the
data of each link are: the length in the undefor­
med state is 0.19m, the mass is 20kg, the spring
constant in the longitudinal direction is 8 X J06NI
m. The constants of the both springs between the
road wheel and the track, and between the ground
and the track are assumed to be 108 Nyrn, and h»
and hg shown in Fig. 2 are taken to be 2cm. And
the average track tension in the initial equilib­
rium state is 80AkN (in the initial equilibrium
state the highest track tension in front of the first
road wheel is 84.18kN, and the lowest tension in
the track touching the ground is 78.68kN). And
the height of the step on the ground is 0.1m.

Initially the vehicle is in the equilibrium state
as shown in Fig. I and moves with the horizontal
velocity of JO m/s, and touches the corner of the
step of the ground at t=0.0568 sec. The configura-
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Fig. 8 Configuration of the tracked vehicle at
t=O.1 sec

Fig. 9 Configuration of the tracked vehicle at
t=0.35 sec
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Fig. 12 Variation of the vertical contact force
between the third wheel and the track
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Fig. 13 Variation of the vertical contact force
between the fifth wheel and the track
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Fig. 14 Detailed variation of the vertical contact
force between the first wheel and the track

the chassis is shown in Fig. 15, and the detailed

variation is shown in Fig. 16. As shown in Figs.

11-16, severe oscillations develop when the vehi­

cle passes the obstacle. The variation of the

horizontal velocity of the mass center of the
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Fig. 10 Configuration of the tracked vehicle at
t=0.45 sec
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Fig. 11 Variation of the vertical contact force
between the first wheel and the track

tions of the vehicle at t=O.1 sec, t=0.35 sec, and

t=0.45 sec are shown in Figs. 8-10, respectively.

The time histories of the vertical components of

the contact forces on the first, third, and fifth road

wheels acting by the track are shown in Figs. II

-13, and the detail of the vertical contact force of

the first road wheel is shown in Fig. 14. As shown

in the Figs. 8-14, the road wheels repeat contact

and separation with the track. The time histories

of the vertical acceleration of the mass center of
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Fig. 16 Detailed variation of the vertical accelera­
tion of the mass center of the chassis
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Fig. 15 Variation of the vertical accelerationof the
mass center of the chassis
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Fig. 17 Variation of the horizontal velocity of the
mass center of the chassis

chassis is shown in Fig. 17, which indicates that
the horizontal velocity of the chassis changes
when it passes the obstacle. The variation of the
energies were also computed and are plotted in
Fig. 18. The maximum deviation in the energy
balance with respect to the initial kinetic energy
remained less than 0.06% of the initial total
energy, and thus it may be stated that the collision
of the track with the obstacle has only negligible
effect on the accuracy of the solution. Here, the
energy balance is defined as

0.0 0.1 0.2 0.3 0.4 0.5

Time (s)

Fig. 18 Variations of the energies of the vehicle

In all of the above computations of this exam­
ple, subroutine DOPRIN (Hairer, Norsett, and
Wanner, 1987) was employed for the time integra­
tions of Eq. (9) after several modifications and
the integration tolerance was set to be 1O-8m. And
the constraint tolerances for constraint error
vectors in Eqs. (12), (13), and (14) were taken to
be 1O-9m, 10-9 I Llt m/s, and 10-9 I Llt 2m/ s2,

respectively.

6. Concluding Remarks

Energy Balance=O.5(q TMcq + aTMTa)
-l-Elastic Energy-External Work

where the elastic energy consists of the energies of
the torsion bars, track tension and contact forces
on the upper and lower surfaces of the track (for
a similar definition of energy balance, see the
references such as Vu-Quoc and Olsson (1989».

A numerical technique for the dynamic analysis
of a high-speed military tracked vehicle moving
on a ground obstacle has been presented with
special emphasis on the impulsive contact forces
acting on the track. To compute the complicated
dynamic contact force acting impulsively, the
track has been modeled as numerous elastic links
interconnected by pin joints. The mass of each
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track link, the elastic elongation of a track link
between pin joints by the track tension, and the
elastic spring effects on the upper and lower
surfaces of each track link have been considered.
The equations of motion of the chassis and the
road wheels have been obtained with the
multibody dynamics techniques using kinematic
constraints between them. The contact positions
and contact forces acting on the road wheels and
the track as well as the track tension have been
simultaneously computed with the solutions of
the equations of motion of the whole vehicle
system. The numerical experiments show that,
even though severe oscillations develop in the
vehicle components and contact forces when the
vehicle moves on an obstacle with high speed, the
principle of the energy balance of the whole
vehicle system is successfully checked, which may
be the indication of the correctness of the solu­
tion.

In this work, to check the feasibility of the
solution with a relatively simple model, the con­
tact forces on the track have been computed by
assuming linear springs on the contact points.
More practical solution may be obtained if non­
linear springs (e. g., forces by Hertzian contact)
and damping effects are considered and if more
complicated vehicle components such as sprocket
and idler are involved for the contact with the
track. Also, with reasonable models of the ground
deformation, the more realistic contact forces
between the track and the ground may be
obtained. Further work is required to compute
the dynamics of the real tracked vehicles with
more complicated models.
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Appendix

For efficient computation of the iterative
scheme, the acceleration technique shown by Lee
(1989, 1993, 1997) is employed in this work, and



only the necessary matrices are outlined here.
From matrix C, a series of matrices, C«. are
defined as

Cn=C Illcll", if n=I
-c.sua-c,» ifn~2 (AI)

In the above, n is an integer number and €; is the
assumed minimum positive eigenvalue of matrix
C. And matrix An is defined as

A n=! if n=1

= (bn!-Cn-1)An-1 if n~2 (A.5)

And the following relation is derived by defini­
tions (AI) and (A5):

Cn=C IIICII",An (A6)

1040

where

bn=cn-l +Wn-l (n~2)

wn=l if n=l
= (bn)2/4 if n~2

cn=€; if n=l
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(A2)

(A3)

=cn-1Wn-1 if n~2 (A4)


